Problem 2.12

Use Gauss's law to find the electric field inside and outside a spherical shell of radius R that carries a uniform surface charge density σ. Compare your answer to Prob. 2.7; notice how much quicker and easier Gauss's method is.

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the spherical symmetry, the divergence is sufficient. Integrate both sides over the volume of a (black) concentric spherical Gaussian surface with radius r. Two cases need to be considered: (1) $r<R$ and (2) $r>R$.

Gaussian Surface
with $r<R$

Enclosed Charge is 0

Gaussian Surface with $r>R$

Enclosed Charge is q

$$
\begin{aligned}
\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \nabla \cdot \mathbf{E} d V_{0} & =\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \frac{\rho}{\epsilon_{0}} d V_{0} \\
& =\frac{1}{\epsilon_{0}} \iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \rho d V_{0} \\
& = \begin{cases}\frac{1}{\epsilon_{0}}(0) & \text { if } r<R \\
\frac{1}{\epsilon_{0}}(q) & \text { if } r>R\end{cases}
\end{aligned}
$$

Apply the divergence theorem on the left side.

$$
\oiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=r^{2}} \mathbf{E} \cdot d \mathbf{S}_{0}= \begin{cases}0 & \text { if } r<R \\ \frac{q}{\epsilon_{0}} & \text { if } r>R\end{cases}
$$

Because of the spherical symmetry, the electric field is entirely radial: $\mathbf{E}=E(r) \hat{\mathbf{r}}$. Note also that the direction of $d \mathbf{S}$ is the outward unit vector to the Gaussian surface.

$$
\oiint_{r_{0}^{2}=r^{2}}\left[E\left(r_{0}\right) \hat{\mathbf{r}}_{0}\right] \cdot\left(\hat{\mathbf{r}}_{0} d S_{0}\right)=\left\{\begin{array}{cc}
0 & \text { if } r<R \\
\frac{q}{\epsilon_{0}} & \text { if } r>R
\end{array}\right.
$$

Evaluate the dot product.

$$
\oiint_{r_{0}=r} E(r) d S_{0}= \begin{cases}0 & \text { if } r<R \\ \frac{q}{\epsilon_{0}} & \text { if } r>R\end{cases}
$$

$E(r)$ is constant on the spherical Gaussian surface, so it can be pulled in front of the integral.

$$
E(r) \oiint_{r_{0}=r} d S= \begin{cases}0 & \text { if } r<R \\ \frac{q}{\epsilon_{0}} & \text { if } r>R\end{cases}
$$

Evaluate the surface integral.

$$
E(r)\left(4 \pi r^{2}\right)= \begin{cases}0 & \text { if } r<R \\ \frac{q}{\epsilon_{0}} & \text { if } r>R\end{cases}
$$

Solve for $E(r)$.

$$
E(r)= \begin{cases}0 & \text { if } r<R \\ \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} & \text { if } r>R\end{cases}
$$

Therefore, the electric field around the spherical shell is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if } r<R \\
\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array} .\right.
$$

This is the same result obtained in Problem 2.7 but with r instead of z. In terms of the given surface charge density $\sigma=q /\left(4 \pi R^{2}\right)$, it is

$$
\mathbf{E}=\left\{\begin{array}{ll}
0 & \text { if } r<R \\
\frac{1}{4 \pi \epsilon_{0}} \frac{\sigma\left(4 \pi R^{2}\right)}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if } r<R \\
\frac{\sigma}{\epsilon_{0}} \frac{R^{2}}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array} .\right.\right.
$$

Notice that in the limit as $r \rightarrow R^{+}$, the electric field magnitude is σ / ϵ_{0}, the same as for the infinite plane.

